
Log Analysis
When CLI get's complex

ITNOG3
Octavio Melendres

Network admin - Fastnet Spa

Introduction
● Network engineer at Fastnet Spa from 2003
● Fastnet Spa is an ISP from Marche Region located in Ancona
● Company started in 1995 with analog modem access lines
● Today connecting companies and citizens using several technologies from

wireless, DSL to fiber optics
● Uplinks to MIX and NAMEX up to 10Gbps
● Providing cloud, colocation and backup services at own Ancona

datacenters

Log analysis for a network admin
Log analysis is often a challenging task. (Even for a vi expert)
Requires the analysis of great amount of data in short periods of time
Usually under pressure from management in response of a network failure or
attack

Solution used
 There are several log analysis

solutions available today!
 Most of solutions found are

commercial
 Decided to use elasticsearch

open source for Log Analysis
 Elasticsearch project is open

source with commercial add-
on modules

Log analysis process steps

1. Generate & collect
2. Aggregate & normalize
3. Store & optimize
4. Analysis & Alert

Generate & Collect

Generate & Collect - Send all logs!!
Log messages are generated directly by network devices and sent to
Logstash module
Logdata from servers is collected using Beats package
On old servers, used sshmount from the logserver to load the files

Generate & Collect - Filebeat
Filebeat module uses a
simple configuration with
sections input, output
Includes several libraries
with predefined file
formats like: ngix, apache,
mysql
Support load balancing
and reliable export to
multiple servers

Example configuration:

filebeat.prospectors:
- input_type: log
 paths:
 - /var/log/fastnetmng/*.log

output.logstash:
 hosts: ["localhost:5044"]

Aggregate & Normalize

Aggregate & Normalize - LOGSTASH
Logstash is a data processing pipeline
Ingest data from different sources
Transforms data
Sends reliably to elasticsearch

Aggregate & Normalize - LOGSTASH
Example configuration:
input {
 udp {
 port => 42186
 type => syslog
 tags => "cisco-fw"
 } }
filter {
 if "cisco-fw" in [tags] {
 grok {
 match => ["message", "^<%{POSINT:syslog_pri}>:%{CISCOTIMESTAMP:timestamp} ?(CEDT:|CEST:) %.*: %
{GREEDYDATA:cisco_message}"]
 tag_on_failure => "_grokparsefailure1"
 } } }
output {

if "cisco-fw" in [tags] {
 elasticsearch {
 hosts => "127.0.0.1:9200"
 index => "firewall-%{+YYYY.MM.dd}"
 }}}

Aggregate & Normalize - GROK language
Grok is a language to
parse unstructured data
using pattern matching
A great tool for
development is the Grok
debugger interactive web
page
https://grokdebug.herokuapp.com

Aggregate & Normalize - Better syslog reliability
Syslog uses mostly UDP
unreliable protocol
With logstash is possible
to save unique logs from
multiple copies, using
hashing techniques

Example logstash configuration:
filter {
 fingerprint {
 source => ["message"]
 target => "fingerprint"
 key => "fastnethash"
 method => "SHA256"
 concatenate_sources => true
 }}
output {
 elasticsearch {
 document_id => "%{fingerprint}"
 }}

Store & Optimize

Store & Optimize - ELASTICEASEARCH

 Elasticsearch is a search
and analysis distributed
engine

 Open source project
based on Apache Lucene
project

 Engine stores and indexes
data

Store & Optimize - ELASTICEASEARCH Deployment

Store & Optimize - ELASTICEASERCH MySQL differences

Elasticsearch stores and indexes
data like a database with some
differences:

Store & Optimize - ELASTICSEARCH Security

 Encryption and authentication is implemented in
commercial module

 A workaround used for deployments used by
small group of admins:
 Isolated Vlan for elastic cluster communication
 Firewall publishes only the ports used to ingest

data, filter on source
 Isolated Kibana with NGIX server as

authenticated proxy

Store & Optimize - Index Maintenance
Elasticsearch module
CURATOR performs
maintenance on
stored data
Used CURATOR to
automate remove or
archive old data using
CRON jobs

Example configuration:
actions:
 1:
 action: delete_indices
 description: >-
 Delete indices older than 7 days
 filters:
 - filtertype: pattern
 kind: prefix
 value: firewall-syslogs-
 exclude:
 - filtertype: age
 source: name
 direction: older
 timestring: '%Y.%m.%d'
 unit: days
 unit_count: 7

Analysis & Alert

Analysis &Alert - Search data with Kibana
Full text search
with trends

Analysis
&Alert
Counting based
on occurrences
of field
gathered from
Logstash

Analysis
&Alert

Graphing
numbers of
occurrences at
several levels

Analysis &Alert
Email server
example:
Trending
emails sent
over time

Analysis &Alert - Alerting
Alerting is included in the commercial X-Pack, Watcher module
Alternative open source project using the elastic API:
https://github.com/Yelp/elastalert
http://elastalert.readthedocs.io

https://github.com/Yelp/elastalert
http://elastalert.readthedocs.io/

What’s next? Some interesting new features
Interesting developments are being released constantly,

some recent:
Netflow module, for easier traffic analysis
Logstash Jquery for importing SQL data
Artificial intelligence features, unfortunately as

commercial add-on

Thank you !
For any additional questions, please send me a note:

o.melendres@fastnet.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27

