ri|iii|ii cisco

Segment Routing Technology and Use Cases

Alberto Donzelli Solution Architect donz@cisco.com 6 Nov 2018

INTRODUCTION

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public

Segment Routing Leading Use Cases

 $\ensuremath{\textcircled{C}}$ 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public

Segment Routing

Segment Routing – Overall principle

© 2017 Cisco and/or its affiliates Eind retoriend on forwarding behavior defined in the packet

Segment Routing Traffic Engineering

SCALING: No state and limited label utilization MPLS LFIB with Segment Routing

- LFIB populated by IGP (ISIS / OSPF/BGP)
- Forwarding table remains constant (Nodes + Adjacencies) regardless of number of paths

BRKRST-2124 © 20

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 8

Segment Routing – packet structure + segments

Segment Routing – packet structure + segments

Segment Routing – packet structure + segments

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Multiple SID lists Unequal load balancing

- A policy can have multiple SID list
- Each SID list has his own weight for unequal load balancing

http://www.eantc.de/fileadmin/eantc/downloads/events/2017-2020/MPLS2018/EANTC-MPLSSDNNFV2018-WhitePaper-final.pdf

Interoperability

White Paper 2018
INTEROPERABILITY SHOWCASE

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Use Cases

Rapid Protection: automatic TI LFA FRR

Problem	16007
Incomplete coverage, topology dependent coverage of classical LFA	Payload
Solution	
Automated Topology Independent with guaranteed sub- 50ms per-prefix protection	
Bonofits	16005 16007
Denents	Payload
Simple and Automated IGP computed / No midpoint backup state	Fayload
Optimal Backup path following post-convergence path	
Scalable Cisco's TI-FLA algorithm – optimized for scalability Post-convergence path computation and SID-list encoding	1 16007 Payload

Low Latency Path Real time Delay Measurement

detect optical path reroute, by measuring delay/jitter/loss variations in real-time

Meet, Maintain and Monitor SLAs at all times

Find the best delayoptimized path to Node 4

MPLS Performance Monitoring (PM)

Exhaustive

Telemetry

Operate with Advanced Monitoring

Simplified planning: SR Traffic Matrix

Capacity planning Bandwidth Optimization IP/Optical Optimization

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

SRTE SR Policy

SRTE with Segment Routing

SR Policy Identification

• An SR Policy is uniquely identified by a tuple (head-end, color, end-point)

Head-end: where the SR Policy is instantiated (*implemented*)

Color: a numerical value to differentiate multiple SRTE Policies between the same pair of nodes

End-point: the destination of the SR Policy

• At a given head-end, an SR Policy is uniquely identified by a tuple (color, end-point)

The ima

SR Policy Identification

- For the same destination different colors (*) for different SLA
- Green = Low Latency
- Blue = High Bandwidth

Segment Routing – Automated Steering (AS) based on destination

© 2017 Cisco and/or its affiliates. All right reserved. Cisco Confidential into SR Policy based on destination

Segment Routing - On Demand Next Hop

© 2017 Cisco and/or its affiliates. All right reserved. Cisco Confidential into SR Policy based on destination

2017 Cisco and/or its affiliates. All rights reserved

Flex Algo

SR IGP Flex Algo

- Complements the SRTE solution by adding new Prefix-Segments with specific optimization objective and constraints
 - minimize igp-metric or delay or te-metric
 - avoid SRLG or affinity
 - Plane A/B
 - Only encrypted links

Multiple Prefix SIDs for the same destination Different paths!!

- What is SR IGP Flexible
 Algorithm?
- An operator-defined custom IGP algorithm leveraging dedicated Prefix-SID
- Example operator configure the normal IGP and associate Pref-SID 16004 to Lo0
- operator defines Flex-Algo 129 as "minimize delay metric" with Prefix SID 18004 associated to Lo0
- For each destination two different SID are installed in routers FIB

Example Use-Case – Dual Plane

- Grey nodes support Algo 0/128/129
- Green nodes support 0/128
- Red nodes support 0/129
- Algo 128: minimize IGP metric
- Algo 129: minimize IGP metric
- Nodes advertise a Prefix SID for each Algo they support
 - For example, for node N: 16000 + N
 - > + 0 for Algo 0
 - > + 800 for Algo 128
 - > + 900 for Algo 129

Thanks

© 2017 Cisco and/or its affiliates. All rights reserved.