ıılııılıı cısco

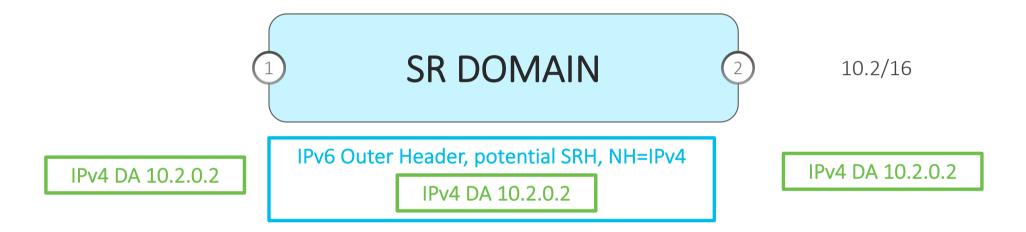
SRv6 Record-Speed Standardization and Deployment

Ahmed Abdelsalam ahabdels@cisco.com

ITNOG6 - Bologna

Thank you

- Lead operators
- EcoSystem Partners
- Academic Partners
- IETF Partners
- Cisco SR Team



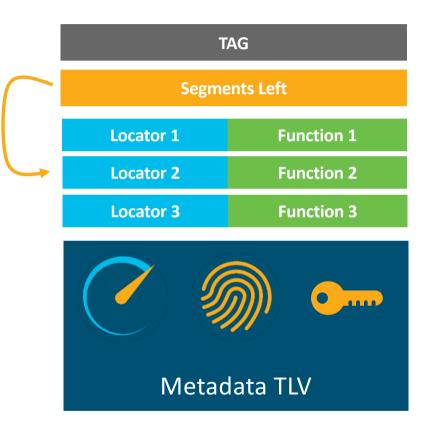
segment-routing.net

- SRv6 uSID: <u>CKN</u>, <u>MPLS WC</u>, <u>DKNOG</u>, <u>Training</u>
- SRv6 Ultra-Scale SR Policy: 26 uSID push at linerate: demo
- BGP PIC Edge with SRv6 Summarization: ISIS UPA: <u>demo</u>
- Path Tracing: <u>NANOG</u>, <u>Tutorial</u>

Introduction

- Customer packet is encapsulated from ingress to egress of the SR Domain
- SRv6 is applied to the OUTER header
- The inner packet is untouched

SRv6 Network Programming - RFC8986

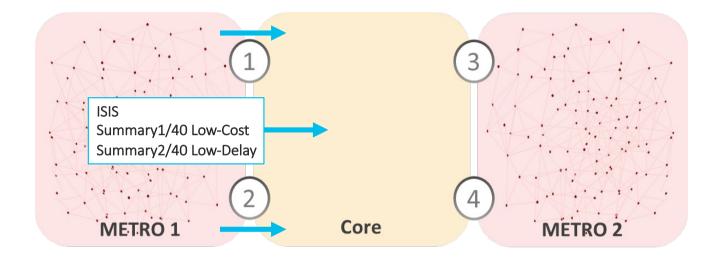

- The End-to-End Policy is encoded as a Network Program
 - The first instruction is in the outer DA
 - The remaining instructions are in the SRH
- An instruction (a SID) may be bound to any behavior
 - TILFA FRR and uLoop Avoidance
 - Traffic Engineering: internal to the domain and across peering links
 - L2/L3 VPN's
 - NFV
 - Any HW custom behavior: P4 on Silicon1
 - Any SW custom behavior: Container orchestrated by Kubernetes
- Powerful Service Creation
 - Any service can be encoded as an ordered list of instructions (Low-latency Slice, VPN)

Stateless Fabric

- The state (network program) is in the header
- The state is not in the fabric

SR Extension Header

- SRv6 is a native extension of IPv6
 - RFC 8754
 - As foreseen 25 years ago by RFC2460
- SRH contains an ordered list of SID's



Unified Data Plane And Seamless Deployment

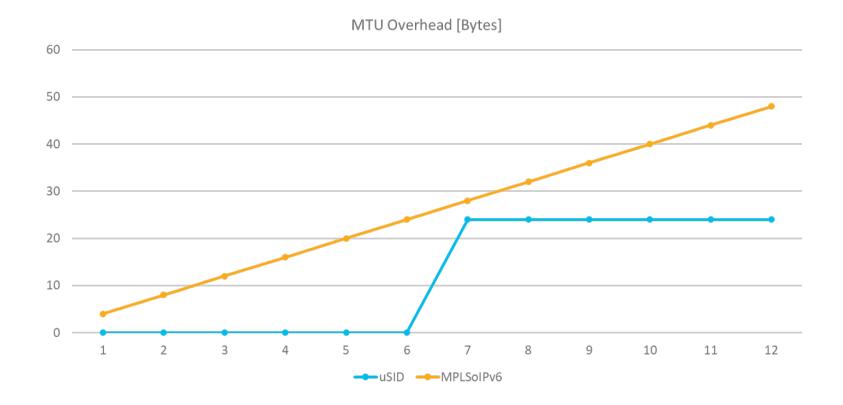
- A unified data plane spanning from Application socket to Internet peering though Datacenter, Access, Metro, Core, Peering
- A single data plane natively supported by all nodes just IP!
- Seamless forwarding through IPv6 transit nodes
- Most use-cases do not need an SRH
 - DA SID contains up to 6 microinstructions (uSID's)

Host User Equipment Container Peering Cell Site Access Metro Datacenter

Prefix Summarization

- 1000 times less IGP routes than with MPLS
- No BGP inter-AS Option A/B/C
- End-to-End Flex Algo Continuity

Optimum Load Balancing


• The entropy of the inner packet is present in the outer Flow Label

Less is More

- No MPLS dataplane
 - 66% less dataplane entries and counters
- No MPLS to the host
 - Bringing MPLS to the host is very complex: i.e. there is no label in a socket
- No VxLAN gateway at the DC edge
 - SRv6 end-to-end
 - Massive economical benefit
- No UDP trick for LB
- No RSVP-TE for TE/FRR
- No NSH for NFV

Lowest MTU Overhead

One of the many benefits of SRv6 Micro Instructions

Deployment Status

Record-Speed Deployment

- 3 years of commercial deployment (2019-2022)
- ~100M SRv6 subscribers

© 2021

- ~100 deployments, with ~14 public reports
- Across markets (Web, SP, Enterprise) and geographies (Asia, EU, US)

SoftBank	Rakuten	Indosat	MTN Uganda	Noia
lliad	Alibaba	China Telecom	China Bank	Cernet2
Free	Bell Canada	China Unicom	Line	
21 Cisco and/or its affiliates. All rights reserved. Cisco Public.	NEW			

Commitment to SR Lead-Operators

Standard-Based Technology

Vendor eco-system

Open-Source eco-system

Mature Standardization

- Proposed Standard
 - RFC 8402 SR Architecture
 - RFC 8754 SRv6 DataPlane
 - RFC 8986 SRv6 Network Programming
 - RFC 9252 SRv6 BGP Extension
 - RFC 9256 SR Policy
 - RFC 9259 SRv6 OAM

Much faster standardization than usual Sign of the SRv6 Industry Endorsement

Rich Eco-System

- 25 HW implementations
 - Cisco Systems, Nokia, Arrcus, Kaloom, NoviFlow, Huawei, ZTE, Juniper
 - Broadcom, Barefoot, Intel SmartNIC, Marvell, Mellanox,
 - Spirent, Ixia
 - Multiple Interop Reports
- 14 open-source platforms/ Applications
 - Linux, FD.io VPP, P4, iptables, nftables, snort, ExaBGP, GoBGP, GoBMP, Contiv-VPP, SONiC, SAI, FRR, SERA

Many Successful Interops

• 2020/04: EANTC: SRv6 interop between Cisco, Huawei, Juniper, Arrcus, Ixia (link)

- Classic IPv6 nodes as SRv6 transit nodes
- SRv6-L3VPN for IPv4 and IPv6 services
- SRv6 TI-LFA FRR link protection with SRH insert
- SRv6 EVPN for E-Line and EVPN L3VPN services
- SRv6 TE SR Policy
- 2021/02: NetOne Systems (link)
 - Cisco XR, Cisco NX, Juniper

• 2021/09: EANTC: SRv6 interop between Cisco, Huawei, Juniper, Nokia, Spirent (link)

- SRv6-Based Global IPv4 and IPv6 services
- SRv6-L3VPN for IPv4 and IPv6 services
- SRv6 TI-LFA FRR local SRLG protection with SRH insert
- SRv6 EVPN for E-Line and EVPN L3VPN services
- IGP Flex-Algo using TWAMP-measured link delays

SRv6 uSIDs

SRv6 uSID Terminology

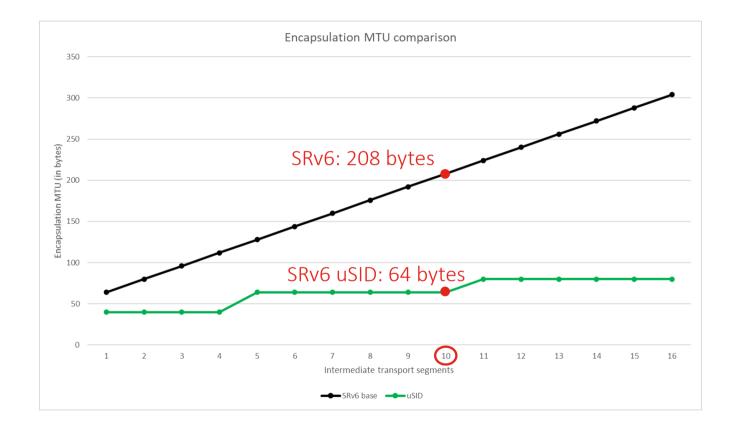
- Industry:
 - SRv6 Micro Segment
 - SRv6 uSID
 - Briefly: uSID

• IETF: NEXT-C-SID

- Briefly: Next
- IETF document: draft-ietf-spring-srv6-srh-compression-01
- Training: <u>link</u>

Container of 6 uSID's

- SRv6 Network Programming (RFC8986)
 - The source encodes any end-to-end program as an ordered list of instructions
 - The first instruction is in the outer DA
 - The remaining instructions are in the SRH
- An instruction is called a SID
- A Container SID may contain up to 6 micro-instructions called uSID's


FC00:0000:1111:2222:3333:4444:5555:6666

uSID Block uSID1 uSID2 uSID3 uSID4 uSID5 uSID6

Perfect SRv6 Integration

- uSID reuses SRH (RFC8754) without any change
- uSID strictly applies the SRv6 Network Programming (RFC8986)
- uSID can be bound to any Network Programming Instruction

SRv6 uSID offers the best SRv6 Compression

Rakuten – SRv6 uSID in Deployment

- 5G End-to-End Network Slicing based on SRv6 uSID Flex-Algo
 - SRv6 uSIDs are allocated from the ULA address range
 - SRv6 uSID ISIS Flex-Algo: Low-Cost vs Low-Delay
 - SRv6 uSID BGP services
 - SRv6 uSID TILFA
 - Cisco NCS5500 and NCS-540 series
- Innovation in partnership with Cisco
 - BGP PIC Core and Edge with SRv6 Summarization: ISIS UPA (demo)
 - SR BW counters for deterministic and scalable capacity planning and BW guarantee

Bell Canada - SRv6 uSID Deployment

- Bell promptly switched from SR-MPLS to SRv6 uSID
- Continued Simplification (remove MPLS dataplane)
- Better Routing Scale: Summarization
- Better HW Scale: linerate 26 uSID push for end-to-end SR Policy
- Seamless Deployment (6 uSID's in DA without SRH)
- End-to-End IP Unified Dataplane from socket to Internet Peering
 - SRv6-TE Policy: topological and service uSID's
- Service Programming
- Reduce network service costs by up to 90% footprint by 75% power consumption by as much as 66%

https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Voyer/

https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Bernier-Jesper-Eriksson/

Bell

Seamless Deployment

- Many use-cases leverage classic IPinIP
- The outer DA already holds 6 uSIDs !! D. Cai Alibaba podcast SRv6 uSID
- SDN coherence
 - The SDN controller packs the uSID policy in the outer DA
 - The host/access node only sees an opaque DA
- VPN GW to interconnect with legacy VPN

SRv6 uSID - Feature Parity with SR-MPLS

- TILFA & uLoop Avoidance
- Flex-Algo Low-Cost/Low-Delay with VPN Automated Steering
 - Performance Monitoring: Link Latency (for Low-Delay slice)
- SRv6-TE Policy: topological and service uSID's
- L3VPN (IPv4 and IPv6), IPv4 Internet, IPv6 Internet, PW, BD
- VPN GW to interconnect with legacy VPN
- Seamless Inter-Domain with Summarization
 - No need for complex BGP3107 mechanisms

SRv6 uSID - Rich Eco-System

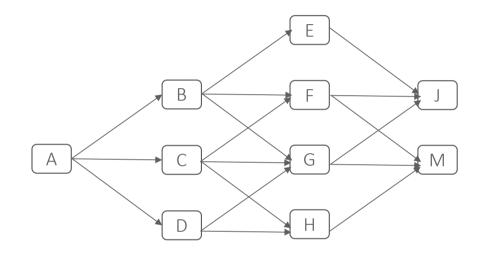
- Cisco, NoviFlow, Arrcus, Nokia, Ciena
- Merchant: Silicon One, Broadcom, Marvell, Barefoot
- Open Source: Linux, FD.io, P4, eBPF, Cillium, SAI, SONIC, FRR

NOKIA

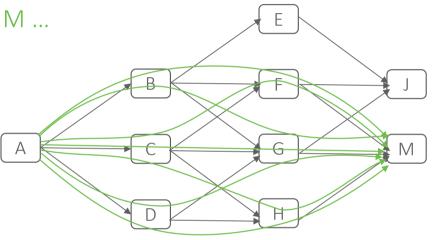
MARVELL

loviFlow

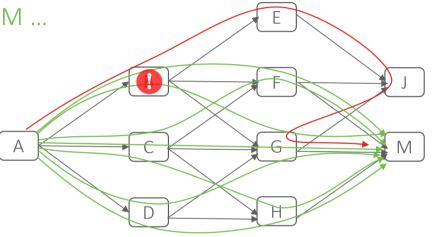
6


......

CISCO

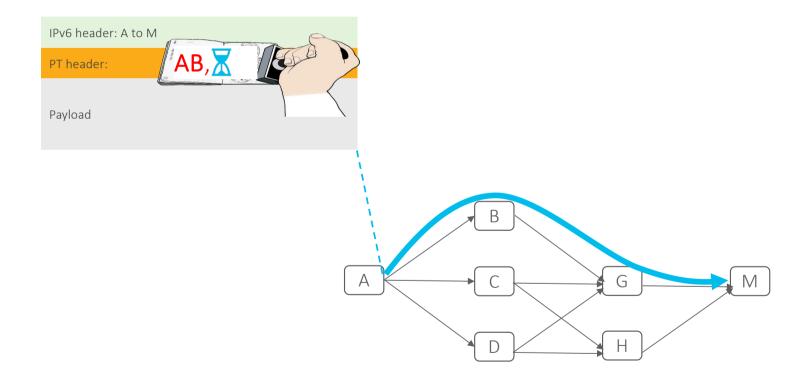

Path Tracing

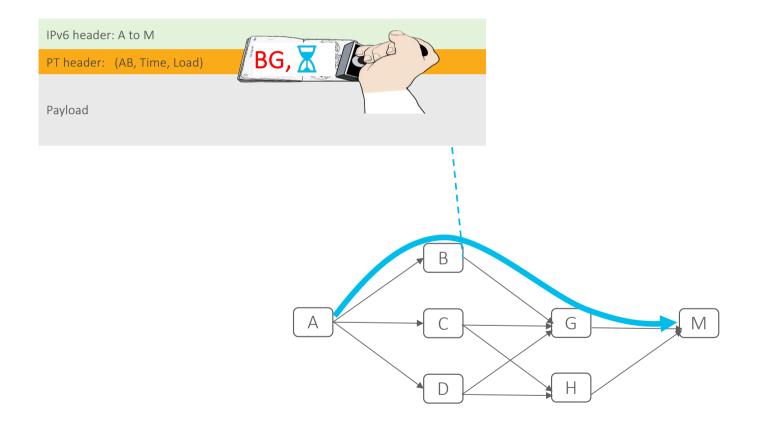
The exact path from A to M is not known


The exact path from A to M is not known

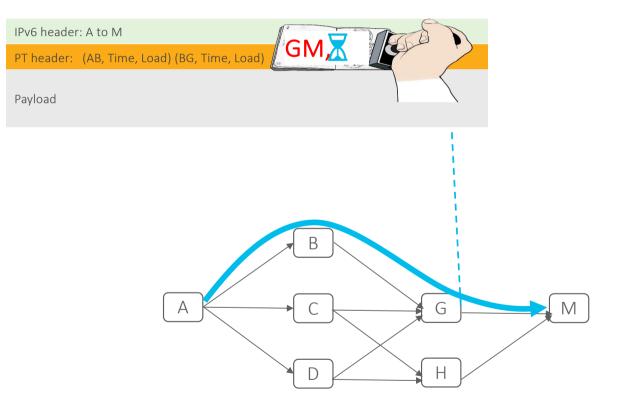
- 7 possible "valid" ECMP path
 - ABFM, ABGM, ACFM, ACGM, ACHM, ADGM, ADHM ...

The exact path from A to M is not known


- 7 possible "valid" ECMP path
 - ABFM, ABGM, ACFM, ACGM, ACHM, ADGM, ADHM ...
- The path may be invalid
 - Routing or FIB corruption @ B
- Timestamp at each hop
- Interface Load at each hop

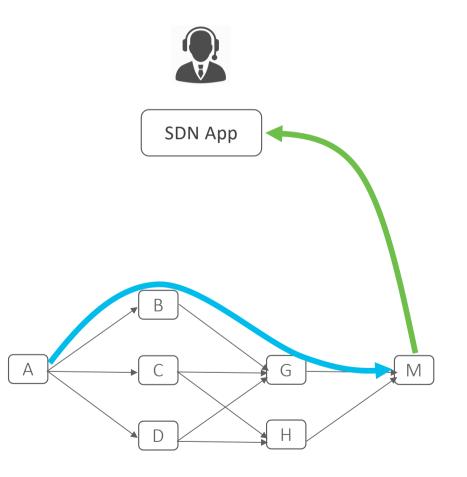

The Path Tracing idea

- Stamping in the Packet Header
- Implemented at linerate in the most basic HW pipeline
 - Linerate for any packet
 - No punting to CPU, no offload to co-processors
- Ultra-MTU-efficient: only 3 bytes per hop!
 - 12-bit Interface, 8-bit Timestamp, 4-bit Load
- For IPv6, with or without SRH
 - MPLS solution also designed
- Interwork with legacy node


Stamping Trajectory in PT Header

Stamping Trajectory in PT Header

Stamping Trajectory in PT Header



Dataplane Encapsulation

- Minimize NPU parsing
- Minimize # of Read/Write
- Minimize depth of Read/Write
- Maximize Read/Write at fixed positions
- Avoid Header Insert/Resize
- Minimize MTU

Minimize HW complexity by leveraging SDN analytics

- Exact path validation (interface by interface)
 - detect blackholes
 - detect unexpected paths
 - detect missing paths
- Propagation latency & Optical stability
- Per node jitter measurement

Product, Deployment & Ecosystem

- Cisco Shipping in CY22
 - C8000 (Q200), NCS5700 (J2), ASR9000 (LS)
- Rich Eco-System
 - Cisco, Broadcom, Marvell, +others
- Rich Open-Source
 - Linux, FD.io VPP, P4, Wireshark, TCPDUMP
- Path Tracing is being standardized at IETF
 - Path Tracing in SRv6 networks (ietf.org)
 - Path Tracing in SR-MPLS networks (ietf.org)

Conclusion

Simplicity Always Prevails

-LDP
-RSVP-TE
BGP 3107
WIPLS
-UDP/VxLAN
-NSH

Furthermore with more scale and functionality

Stay up-to-date

ask-segment-routing@cisco.com

·IIIII CISCO