Traffic Monitoring and Enforcement for ISPs and Service Providers

Luca Deri <deri@ntop.org>
@lucaderi

Who am I

- ntop founder (http://www.ntop.org): company that develops open-source network security and visibility tools.
- Author of various open source software tools and contributor to popular tools (e.g. Suricata and Wireshark).

Lecturer at the CS Dept, University of Pisa, Italy.

Presentation Overview

- This talks reports the lessons learnt while monitoring networks of various ISPs, cloud and service providers.
- Operational requirements change according to the customer so we summarise our experience.
- Most of the tools reported in this presentation are home-grown and open source whose code is available on GitHub.

Monitoring Requirements

- Internet Service Providers
 - Prevent the network from collapsing (mostly DDoS).
 - Visibility of the main network activities in order to understand traffic flows (routing/AS-level, not host).
 - Device monitoring (interface drops, state changes).
- Service/Cloud/Hosting Providers
 - Monitor core services (e.g. DNS, email).
 - Detect severe source of troubles (e.g. heavy spammers) in order to avoid decreasing the <u>overall</u> <u>network reputation</u>.



Cybersecurity in Datacenters

- Contrary to companies where everything has to be policed, in ISPs and Providers the goal is NOT to completely cleanup traffic but keep the network infrastructure healthy by:
 - Mitigating volumetric attacks.
 - Identify and quarantine infected hosts that are potentially dangerous for the whole infrastructure.
 - Block/report suspicious activities by providing customers a detailed report in order them to address the issue.

Monitoring Goal: Anticipate

Picture courtesy of switch.ch

ITNOG6 - 16.09.2022

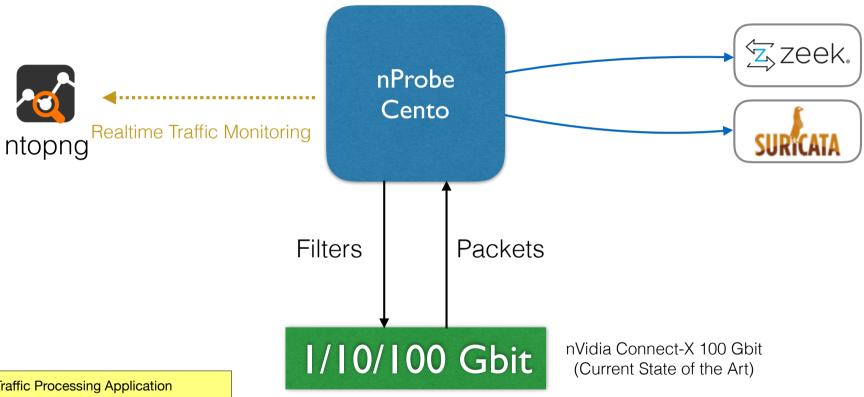
https://github.com/ntop/

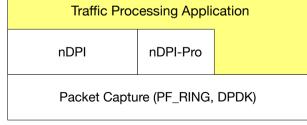
(D)DoS Mitigation and Detection

- All modern networks are DDoS-protected by the carriers or by leveraging on DDoS-mitigation companies.
- By nature, DDoS-mitigation is coarse, as protection mechanisms and not permanent but are enabled when specific network conditions are met.
- •The outcome is that volumetric attacks not too heavy (e.g. in the 1 Gbit range, or targeting a few specific host/services) are <u>not mitigated</u>. This puts pressure on the infrastructure (e.g. the firewall), can block specific customers, and increase operational costs due to the need to buy more powerful equipment than necessary.

DPI at 100 Gbit [1/3]

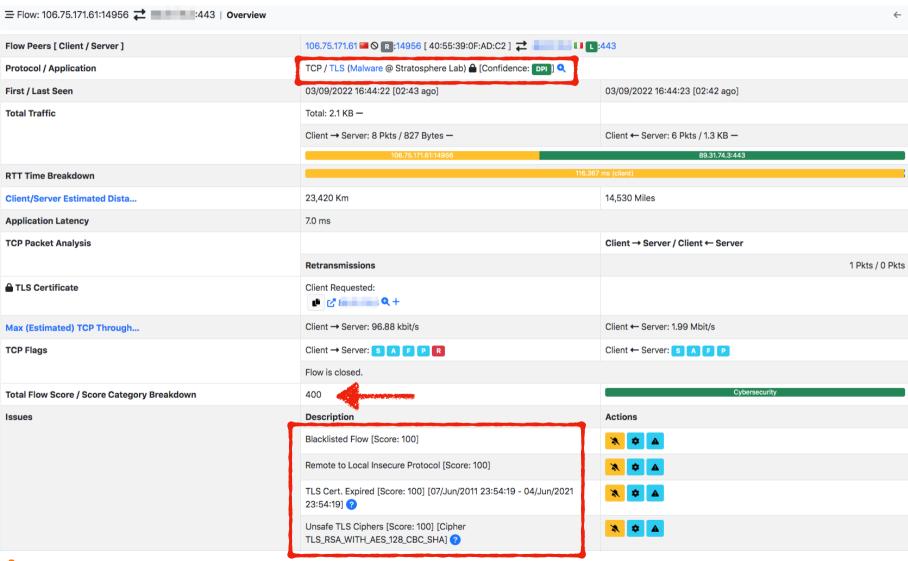
- DPI (Deep Packet Inspection) enables the inspection of packet payload in order to extract metadata and characterise traffic.
- Commercial DPI libraries are often quite expensive in price, and do not cope with high-speed (> 10 Gbit).
- •Network administrators are used (often due to limitations of leading hardware manufacturers) to monitor sampled data with not DPI information.
- In 2022 we need <u>full visibility with DPI and ETA</u>.


DPI at 100 Gbit [2/3]

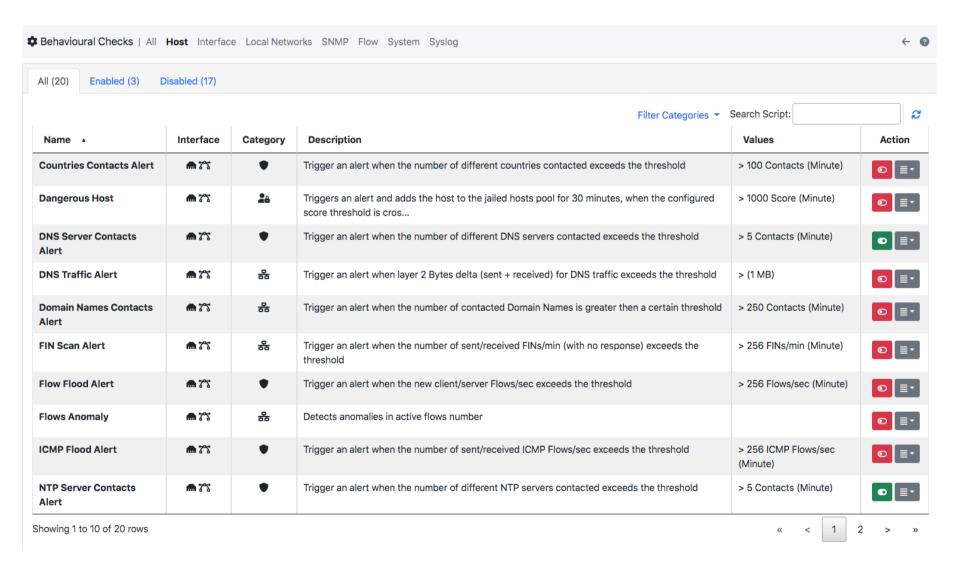

•nDPI is a GNU LGPL DPI ntop develops: 300+ protocols supported, ETA and cybersecurity traffic analysis by means of flow risk analysis.

Id Risk	Severity	Score	CliScore	SrvScore
1 XSS Attack	Severe	250	225	25
2 SQL Injection	Severe	250	225	25
3 RCE Injection	Severe	250	225	25
4 Binary App Transfer	Severe	250	125	125
5 Known Proto on Non Std Port	Medium	50	25	25
6 Self-signed Cert	High	100	90	10
7 Obsolete TLS (v1.1 or older)	High	100	90	10
8 Weak TLS Cipher	High	100	90	10
9 TLS Cert Expired	High	100	10	90
10 TLS Cert Mismatch	High	100	50	50
11 HTTP Suspicious User-Agent	High	100	90	10
12 HTTP Numeric IP Address	Low	10	5	5
13 HTTP Suspicious URL	High	100	90	10
14 HTTP Suspicious Header	High	100	90	10
*				
39 Text With Non-Printable Chars	High	100	90	10
40 Possible Exploit	Severe	250	225	25
41 TLS Cert About To Expire	Medium	50	5	45
42 IDN Domain Name	Low	10	1	9
43 Error Code	Low	10	1	9
44 Crawler/Bot	Low	10	1	9
45 Anonymous Subscriber	Medium	50	25	25
46 Unidirectional Traffic	Low	10	5	5

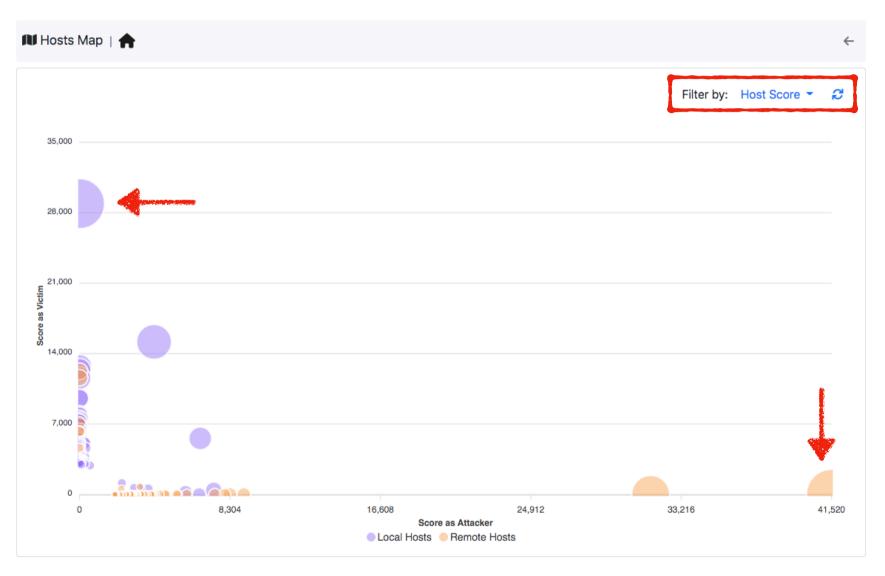
DPI at 100 Gbit [3/3]



NOTE: When packets are not available, flow collection can also work but it will offer <u>limited visibility</u> due to sampling and lack of DPI



Combining Visibility with ETA



Analysing Traffic Behaviour

Spotting Issues [1/3]

Spotting Issues [2/3]

Networks

Networks Score

10 -

Network Name	Chart	Hosts	Score	Alerted Flows	Breakdown Throughput		Traffic
89.: /21	<u></u>	1435	465,051	0	Sent Rcvd	952.95 Mbit/s	361.04 GB
194.: //24	<u></u>	138	55,497	0	Sent Rcvd	38.88 Mbit/s	38.73 GB
185. /22	<u> </u>	112	12,752	0	Rcvd	512.12 kbit/s	44.63 GB
151. /22	<u></u>	788	293,628	0	Sent Rcvd	1.06 Gbit/s	381.67 GB

Showing 1 to 4 of 4 rows

Spotting Issues [3/3]

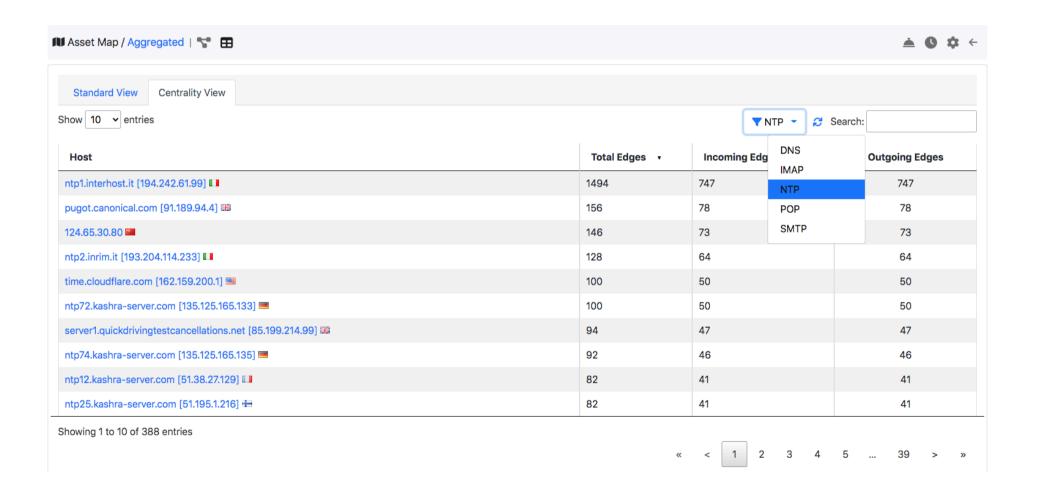
Autonomous Systems

10 -

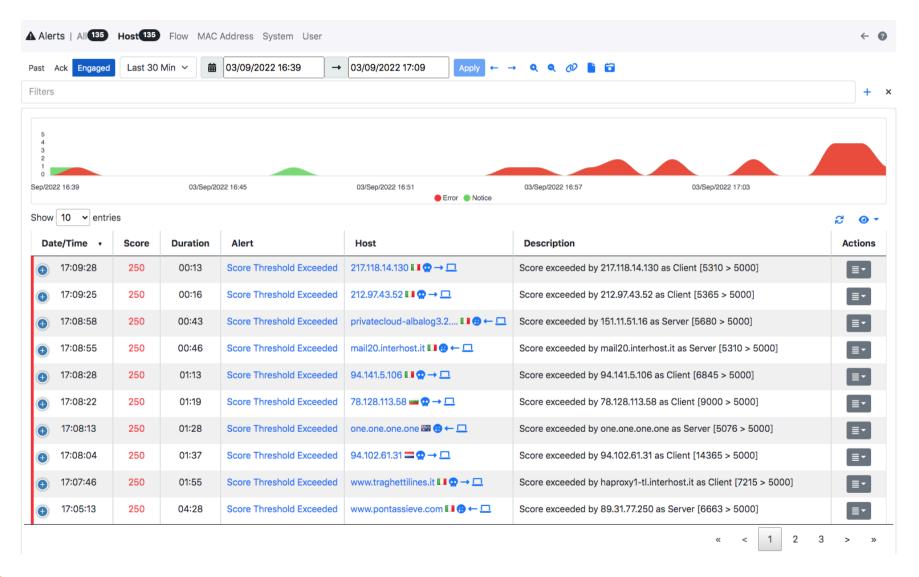
15

AS number	Hosts	Name	Seen Since	Score	Alerted Flows	Breakdown	Throughput	Traffic
24994	2507	genesys informatica srl	08:54:25	795,686		Sent Rcvd	451.62 Mbit/s	2.22 TB
30722	2260	Vodafone Italia S.p.A.	08:54:25	120,452		Sent Rcvd	33.65 Mbit/s	249.81 GB
3269	3053	Telecom Italia S.p.A.	08:54:25	98,442		Se Rovd	37.97 Mbit/s	234.94 GB
12874	1439	Fastweb SpA 🔀	08:54:25	62,909		Ser Rcvd	39.0 Mbit/s	229.01 GB
16276	878	OVH SAS 🔀	08:54:25	49,774		Sent Rcvd	26.17 Mbit/s	47.51 GB
1267	1733	WIND TRE S.P.A.	08:54:25	27,540		Se Rovd	48.83 Mbit/s	130.83 GB
5602	103	IRIDEOS S.P.A.	08:54:25	24,701		Sent Rcvd	120.76 kbit/s	16.94 GB
15169	3806	Google LLC 🔀	08:54:25	26,332		Sen Rcvd	8.39 Mbit/s	58.76 GB
13335	4262	Cloudflare, Inc.	08:54:25	22,851		Sent Rcvd	12.64 Mbit/s	47.56 GB
398324	126	Censys, Inc. 🔼	08:54:25	20,156		Sent Rcvd	45.04 kbit/s	50.53 MB

Showing 1 to 10 of 2729 rows

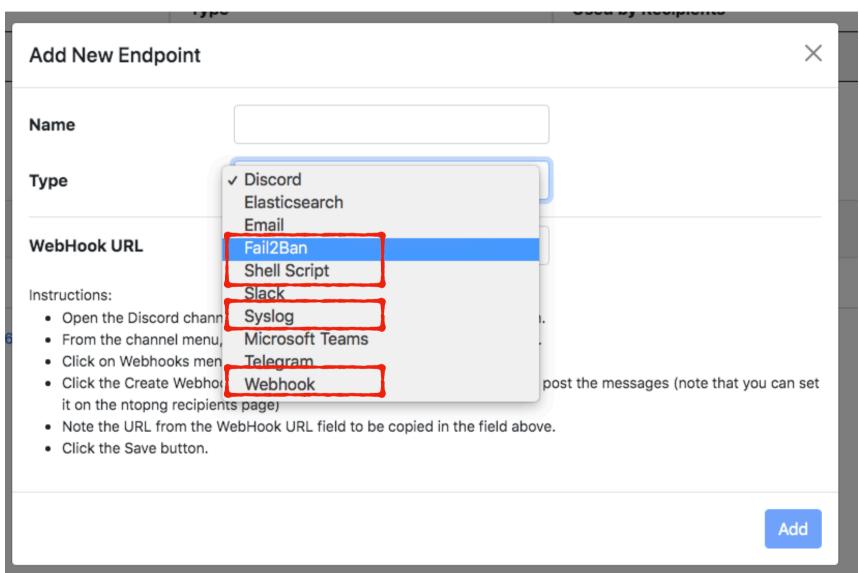


Know Your Network [1/2]



Know Your Network [2/2]

From Alerts to Actions [1/2]



ITNOG6 - 16.09.2022 https://github.com/ntop/

18

From Alerts to Actions [2/2]

Final Remarks

- Over the past 20+ years ntop created open source software framework for efficiently monitoring traffic.
- Commodity hardware, with adequate software, can now match the performance and flexibility that modern network operators require.

Many thanks to Hosting Solutions for supporting this work!

