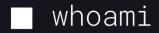

Next Generation Network Telemetry Exploring Technologies and Advancements in Standardization


Bologna, ITNOG 9-10 May 2023

Paolo Lucente Salvatore Cuzzilla

- ► Salvatore Cuzzilla
- ► System Engineer @Swisscom (AS3303)

in https://www.linkedin.com/in/salvatore-cuzzilla/
 https://github.com/scuzzilla
 salvatore@cuzzilla.org

- ► Paolo Lucente
- ► Network Tools Engineer @NTT (AS2914)

in https://www.linkedin.com/in/plucente
 https://github.com/paololucente
 paolo@pmacct.net

Streaming Telemetry

is the commercial term used to describe the idea of <code>f continuously streaming structured data_</code>

• Continuous, *real-time transmission* of data from the network devices to the data collector

• The data is organized according to a *predefined schema* $\Gamma_{YANG models J}$, allowing for easy processing

Modeled Data

 Configuration Data settings & parameters configured on network devices to help network administrators to ensure consistent configurations across the network

• Operational (or State) Data real-time performance and state information of network devices to help network administrators to monitor the *health and performance* of the network

Modeled > Data collection

(*) pmacct \langle multi-protocol data collection & delivery \rangle

- ► Libpcap
- Netflow/IPFIX/sFlow
- ► BGP/BMP
- ► YANG-modeled data streaming 「gRPC dial-out」

YANG-modeled data streaming: desirable features

• Efficiency & performance low latency and high throughput to transmit telemetry data in realtime and minimize the overhead on network devices and monitoring systems

 Scalability handling large-scale network environments, supporting numerous devices and data points simultaneously, without affecting performance or data transmission quality

 Security secure communication between network devices and monitoring systems to protect sensitive data and *maintain network integrity*

Streaming capabilities continuous streaming of data, as well as event-driven notifications and on-demand data retrieval, to provide a comprehensive and real-time view of the network

Interoperability & standardization based on open standards and easy to integrate with various network devices, monitoring tools, and management systems

YANG-modeled data streaming: Protocols Comparison

OpenConfig		IETF		Organization
gRPC Derived		NETCONF	RESTCONF	YANG Based Protocol
	Protobuf/JSON	XML	JSON	Application Layer Payload
	Exposing Remote Service methods via RPC	Exposing Remote Service methods via RPC	REST API Endpoints	Application Layer Framework
	HTTP/2	SSH	HTTP/1.1	Application Layer Protocol
	ТСР	ТСР	ТСР	Transport Layer

- Interoperability & standardization IETF > OpenConfig
- Efficiency & performance Protobuf > JSON > XML
- Scalability HTTP/2.0 > HTTP/1.0 > SSH
- ► Security TLS =

Streaming capabilities
gRPC derived > RESTCONF > NETCONF

■ gRPC 〈SW Development perspective〉 features

- Cross-platform & language support < C++, Java, Python, Ruby, ... </p>
- ho API contract definition $\,\langle$ GPB schema file defines the API contract between client and serverangle
- \blacktriangleright Code generation \langle gRPC compiler is generating a "skeleton" from a GPB schema \rangle

gRPC/MDT(*) dial-out collector

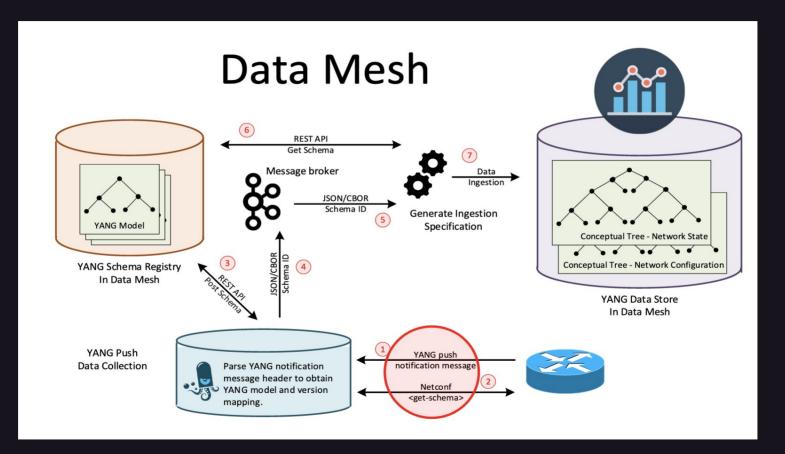
https://github.com/network-analytics/mdt-dialout-collector

- Developed in C/C++ < leveraging grpc.io Asynchronous-API </pre>
- \bullet Dial-out \langle the subscription to a specific data stream is a prerequistiteangle
- Continuous streaming

gRPC/MDT dial-out collector

https://github.com/network-analytics/mdt-dialout-collector

- Multi-vendor gRPC dial-out support
 - ► Cisco-XR 〈 7.4.1@NSC-54〉
 - ► Cisco-XE 〈 17.06.01prd7@C8000V 〉
 - ► Junos 〈 20.4R3-S2.6@mx10003〉
 - ► Huawei VRP 〈 V800R021C10SPC300T@NE40E 〉
- Encodings support
 - ightarrow JSON \langle Cisco-XR | Junos | Huawei VRPangle
 - ► GPB-KV 🕻 Cisco-XR | Cisco-XE 〉
 - GPB \langle Huawei VRP "OC interface" \rangle


Main coordinates for YANG Push Notifications

- ► Massive data scale out
- ► Model distribution
- ► Report model versions
- ► Accurate time-stamping
- Documented cross en/de-coding
- Pipeline protocol (vs router-collector protocol)
- > Standardization

Evolving YANG Push <missing puzzle pieces>

YANG Push	Today at Network Operators	Today at IETF
Transport protocol	Many and non-standard	netconf-http-notif and netconf-udp-notif
Encoding	JSON and Protobuf widely adopted. CBOR not yet implemented	XML in RFC7950, JSON in RFC7951, CBOR RFC9254
Subscription	Non-standard. Periodical widely adopted. On-change, sparse.	RFC8639 and RFC8641
Metadata	Non-standard. Partially among message content.	draft-tgraf-netconf-notif-sequencing draft-tgraf-yang-push-observation-time draft-claise-opsawg-collected-data-manifest draft-claise-netconf-metadata-for-collection
Versioning	Neither covered in subscription nor in publishing.	netmod-yang-module-versioning netconf-yang-notification-versioning
YANG Module	Non-standard widely adopted. IETF coverage non-existent.	Many RFCs defined

YANG Push: Envisioned pipeline

Credits to: T. Graf (Swisscom) @ IETF 116

■ YANG Push: Tooling status quo

- ▶ Two hot metal vendors involved
- ► Transport libraries:
 - https://github.com/insa-unyte/udp-notif-c-collector
 - https://github.com/insa-unyte/https-notif-c-collector
- ▶ (Basic) YANG Push collector:
 - https://github.com/pmacct/pmacct (lots of WiP)
- ► YANG Schema Registry:
 - Confluent / Kafka (WiP)
- Three non-relational database vendors involved

YANG Push: behind the scenes

- ▶ Two hot metal vendors involved
- ► Four network operators
- ▶ One Streaming Pipeline vendor
- Three non-relational database vendors involved
- ► Check the latest here

YANG Push: Work to do

 \langle developers! developers! developers! \rangle

- ► Build ecosystem
 - ► Tools

- ► Libraries
- ► APIs
- ► Keep pushing
 - Standardization
 - ► Traction among operators
 - Adoption among vendors

Thanks

	gRPC derived	NETCONF	RESTCONF
Efficiency & Performance	****	*****	★★★ ★☆
Scalability	****	****	*****
Security	★★★★☆	★★★★☆	****
Streaming Capabilities	****	******	*******
Interoperability	★★★★ ☆	****	****

Data (En|De)coding

- Information is Encoded according to a predefined schema
- Serialization process is converting the data into a stream of bytes, ready to be transmitted over the network
- Binary stream is delimited to ensure that the serialized data can be properly parsed on the receiving end
- Encoded data can be transmitted using any networking protocol that supports binary data

Protocol Buffers (GPB)

package huawei_dialout;

```
//▶ RPC service definition
service gRPCDataservice {
  rpc dataPublish(stream serviceArgs) returns(stream serviceArgs) {};
//▶ RPC message. Encoded/serialized using GBP
message serviceArgs {
 int64 ReqId = 1;
 oneof MessageData {
    //▶ Binary payload. Encoded/serialized using either GBP or GPB-KV
    bytes data = 2;
    // Text payload, String representation of a JSON object. Encoded/serialized using UTF-8
    string data_json = 4;
  string errors = 3;
```