
"Where the !?*! are the packets going?”

Luca Sani
Senior R&D Software Engineer @Catchpoint

ITNOG 2024



© Catchpoint 2024

Traceroute is one of the most famous and long-lasting 

diagnostic tools in networking environment

First implementation by Van Jacobson in

late 80s to answer the question:

"where the !?*! are the packets going" ?

Traceroute



© Catchpoint 2024

• Many traceroute implementations have been created on different OSes 

• Over the years it became one of the most used tools in the Internet measurement 

and topology discovery fields (multipath, de-aliasing, NAT traversal, …)

• Paris, Dublin, Pamplona traceroute...

Traceroute implementations

Augustin, Brice, Timur Friedman, and Renata Teixeira. "Multipath tracing with Paris traceroute." Workshop on End-to-End Monitoring Techniques and 

Services. IEEE, 2007.



© Catchpoint 2024

• We leverage Dmitry Butskoy’s "Linux traceroute"

• Very fast

• Open source

• Easily extendible

• During the years we enhanced this traceroute to include new monitor 

capabilities

• We hope these enhancements can be useful to the community

Linux traceroute

https://traceroute.sourceforge.net/


© Catchpoint 2024

"A noble town since 1841 and a city of art"

(and where our Italian office is located!)

Pietrasanta Traceroute



© Catchpoint 2024

• QUIC traceroute

• ECN bleaching detection

• Work in Azure environment

• TCP “In Session”

• … and many more

Pietrasanta Traceroute



© Catchpoint 2024

QUIC traceroute



© Catchpoint 2024

• QUIC is considered a transport layer protocol

• More than just “UDP”

• e.g., it is the transport layer of HTTP/3

QUIC

IP ICMP

TCP
Congestion control 

Reliable data stream 

(“connection”)

TLS
Encryption

HTTP
Application

Streams

UDP
“Connection-less”

QUIC
Streams

Encryption

Reliable data 

stream

HTTP/3

QUIC assumes responsibility for the confidentiality

and integrity protection of packets. For this it uses

keys derived from a TLS handshake, but instead

of carrying TLS records over QUIC (as with TCP),

TLS handshake and alert messages are carried

directly over the QUIC transport, which takes over

the responsibilities of the TLS record layer.

RFC9001 - Using TLS to Secure QUIC

https://www.rfc-editor.org/rfc/rfc9001#name-protocol-overview


© Catchpoint 2024

QUIC support

Initial

(CRYPTO)

Initial

(CRYPTO, 

ACK)

ICMP TTL

EXCEEDED

... DestinationHop 1Source

Initial

(CC)

TTL=1

TTL=N

• Packets sent are QUIC compliant, so 

the header is protected and the 

payload (frames) are encrypted

• We leverage openssl3

• Nice “side effects”

• Check whether the path filters QUIC

• Determine if the destination supports QUIC

• Check whether ECN is supported

▪ Set IP-ECN in probes

TTL=1

…

TTL=N



© Catchpoint 2024

• Like "TCP half open"

• Do a QUIC handshake then closes the session (if opened)

• Send QUIC "Initial" packet

• Include a CRYPTO frame with TLS "Server Hello"

• Intermediate hops will return ICMP TTL Exceeded

• Destination may return

• QUIC packet

• ICMP port unreachable (still good, dest reached)

• Nothing (timedout)

• Close the session if it is the case

• Send QUIC Initial packet including a CONNECTION_CLOSE frame

QUIC traceroute



© Catchpoint 2024

ECN bleaching detection



© Catchpoint 2024

• ECN is a mechanism to signal that a packet experienced congestion

(The Addition of Explicit Congestion Notification to IP - rfc3168, 2001)

• When a packet experiences congestion is marked instead of dropped

• The destination signals this event to the source, which in turn adjusts the rate

ECN mechanism

https://www.rfc-editor.org/rfc/rfc3168.txt


© Catchpoint 2024

• Two bits into the IP header

• The source declares that a packet should be treated with ECN by 

setting the IP-ECN fields either to 01 or 10

• When congestion happens, instead of dropping the packet the 

router sets the IP-ECN fields to 11 (CE - Congestion Experienced)

ECN marking



© Catchpoint 2024

• A destination that receives a packet with IP-ECN = CE should report to 

the source this event

• The source should then adjust the rate

• The report is done at transport/application layer

• Example: in TCP, this event can be reported using a dedicated TCP flag (ECE – ECN-Echo)

ECN feedback



© Catchpoint 2024

• Recently, ECN mechanism got renewed attention due to L4S 

(Low Latency, Low Loss, and Scalable Throughput – rfc9330, 2023)

• L4S requires an ECN feedback more accurate wrt the “classic” 2001 version

ECN and L4S

https://www.rfc-editor.org/rfc/rfc9330.txt


© Catchpoint 2024

● TCP: More Accurate Explicit Congestion Notification (AccECN) 

Feedback in TCP (still a draft)

● QUIC: Supported natively via ECN counters into the ACK frame

More accurate ECN feedback

https://www.ietf.org/archive/id/draft-ietf-tcpm-accurate-ecn-28.txt
https://datatracker.ietf.org/doc/html/rfc9000#name-ecn-counts


© Catchpoint 2024

● Intermediate hops can bleach/alter the value of ECN into the IP 

header (see for example: The Benefits of Using Explicit Congestion 

Notification (ECN) – rfc8087, 2017

● With Pietrasanta traceroute we can send probes with IP-ECN 

values different from zero and check hop by hop what was the 

IP-ECN value of the probe when it expired

● We can also check whether the destination transport layer (either 

TCP or QUIC) supports more accurate ECN feedbacks

○ TCP stack need to be patched

○ Not all QUIC implementations report ECN counters

ECN bleaching detection

https://www.rfc-editor.org/rfc/rfc8087.txt


© Catchpoint 2024

ECN detection: Some examples

No bleaching, destination

supports AccECN over TCP

Bleaching happened



© Catchpoint 2024

● Run Pietrasanta traceroute from our vantage points deployed 

around the world to understand “how well” the network is ready 

to accommodate L4S

○ Where is the bleaching is happening?

○ Are there specific countries/ISPs/ASNs where it happens systematically?

● Stay tuned for more information!

ECN bleaching research



© Catchpoint 2024

Work in Azure environment



© Catchpoint 2024

• (Linux) VM with private IP

• Inbound ICMP packets are allowed

• Intermediate hops are all *

• This happens for all traceroute protocols

Azure environment



© Catchpoint 2024

Azure environment

2) ICMP TTL Exceeded

1) Probe sent

mismatch

● This happens because the source IP of the original probe encapsulated into 

the ICMP TTL Exceeded is left with the node public IP

● Thus, the ICMP reply is discarded by the kernel (not by traceroute)



© Catchpoint 2024

Work in Azure environment

• We enhanced traceroute to work in "loose match mode"

• Open an additional raw ICMP socket to receive all ICMP packets and 

do the "kernel checks" at user level...

• … but do not check the source address of the encapsulated probe



© Catchpoint 2024

TCP InSession



© Catchpoint 2024

• Classic TCP traceroute sends a different SYN for each hop

• Different SYNs can take different paths

• No consistency within a single traceroute

• Many SYNs are sent per traceroute

• Trigger firewall rules (SYN flood?)

• TCP InSession firstly opens a TCP session with the destination

• Then tracerouting is performed by sending 1-byte data packets within the 

session (with incremental TTL)

Checkout our blog for more information: https://www.catchpoint.com/blog/traceroute-

insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool

TCP "InSession"

https://www.catchpoint.com/blog/traceroute-insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool
https://www.catchpoint.com/blog/traceroute-insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool


© Catchpoint 2024

And many more!

• Path MTU performance improvements

• Report ToS/DSCP hop by hop

• Report MSS when running in TCP mode

• Handle print in a separate thread (speed up)

• Overall timeout

• Compile and run on Alpine

• Avoid UDP standard filtering



© Catchpoint 2024

• Feel free to check/use/ & contribute! 

https://github.com/catchpoint/Networking.traceroute/ (GPL!)

• And come by to meet us!

• Pietrasanta is a nice town on Tuscany seaside... 

Thank you!

https://github.com/catchpoint/Networking.traceroute/

	Slide 1: "Where the !?*! are the packets going?”
	Slide 2: Traceroute
	Slide 3: Traceroute implementations
	Slide 4: Linux traceroute
	Slide 5: Pietrasanta Traceroute
	Slide 6: Pietrasanta Traceroute
	Slide 7: QUIC traceroute
	Slide 8: QUIC
	Slide 9: QUIC support
	Slide 10: QUIC traceroute
	Slide 11: ECN bleaching detection
	Slide 12: ECN mechanism
	Slide 13: ECN marking
	Slide 14: ECN feedback
	Slide 15: ECN and L4S
	Slide 16: More accurate ECN feedback
	Slide 17: ECN bleaching detection
	Slide 18: ECN detection: Some examples
	Slide 19: ECN bleaching research
	Slide 20: Work in Azure environment
	Slide 21: Azure environment
	Slide 22: Azure environment
	Slide 23: Work in Azure environment
	Slide 24: TCP InSession
	Slide 25: TCP "InSession"
	Slide 26: And many more!
	Slide 27: Thank you!

