"Where the 1?*! are the packets going?”

ITNOG 2024

Luca Sani
Senior R&D Software Engineer @Catchpoint

i#+: catchpoint ITN B

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Traceroute

Traceroute is one of the most famous and long-lasting

diagnostic tools in networking environment

Posted-Date: Tue, 20 Dec 05:13:28 PST

F. . I . b V J b . Received-Date: Tue, 20 De 05:14:46 PST
Received: from helios.ee.lbl.gov by venera.isi.edu (5.54/5.51)
IrST Imp ementqhon y an acobson In id AA25560; Tue, 20 Dec 88 05:14:46 PST

Received: by helios.ee.lbl.gov (5.59/52.2)
H id AAB3127; Tue, 20 Dec 05:13:30 PST

late 80s to answer the qUGShon: Message-Id: <8812201313.AA03127@helios.ee.lbl.gov>
To: ietf@venera.isi.edu, end2end-intere nera.isi.edu
Subject: 4BSD routing diagnostic tool available for Ttp
Date: Tue, 20 Dec 88 05:13:28 PST
From: Van Jacobson <van@helios.ee.lbl.gov=>
Content-Length: 2373

"where the 1?*! are the packets going" ? X.Lines: 45

After a frustrating week of trying to figure out "where the !7+*!
are the packets going?", I cobbled up a program to trace out
the route to a host. It works by sending a udp packet with a
ttl of one & listening for an icmp "time e ded"” message. IT
it gets one, it prints the source address from the icmp message,
then bumps the ttl by one & etc. (As usual, I didn't come up
with this clever idea -- I h d Steve Deering mention it at an
end-to-end task force meeting.)

© Catchpoint 2024

Traceroute implementations

* Many traceroute implementations have been created on different OSes
* Over the years it became one of the most used tools in the Internet measurement

and topology discovery fields (multipath, de-aliasing, NAT traversal, ...)
* Paris, Dublin, Pamplona traceroute...

TTL=6 ——1
TTL=17

Hop#6 Hop#7 Hop#8 Hop#9 Hop #10 Possible traceroute outcome:

Hop#6 Hop#7 Hop#8 Hop#9 Hop#10

TTL =8 a

TTL=9 u
TTL=10 .

Fig. 1. Traceroute under load balancing

Augustin, Brice, Timur Friedman, and Renata Teixeira. "Multipath tracing with Paris traceroute." Workshop on End-to-End Monitoring Techniques and
Services. IEEE, 2007.

© Catchpoint 2024

Linux traceroute

* We leverage Dmitry Butskoy’s "Linux traceroute”
* Very fast
* Open source

* Easily extendible

Project Page Download Mail List

This is a new modern implementation of traceroute(8) utility for Linux systems.

It has replaced the old one in the majority of distributions now, including Fedora, RHEL, Debian, Mandriva, Gentoo, Ubuntu.

- During the years we enhanced this traceroute to include new monitor
capabilities

- We hope these enhancements can be useful to the community

© Catchpoint 2024

https://traceroute.sourceforge.net/

Pietrasanta Traceroute

"A noble town since 1841 and a city of art"

(and where our Italian office is located!)

© Catchpoint 2024

Pietrasanta Traceroute

* QUIC traceroute
* ECN bleaching detection

* Work in Azure environment
e TCP “In Session”

° ... and many more

QUIC traceroute

© Catchpoint 2024

QUIC

* QUIC is considered a transport layer protocol

* More than just “UDP”
* e.g, itis the transport layer of HTTP/3

HTTP HTTP/3
Application

Streams
QUIC

TLS Streams
Encryption
Reliable data
stream

Encryption

TCP

Congestion control UDP
Reliable data stream
(“connection”) “Connection-less”

© Catchpoint 2024

QUIC assumes responsibility for the confidentiality
and integrity protection of packets. For this it uses
keys derived from a TLS handshake, but instead
of carrying TLS records over QUIC (as with TCP),
TLS handshake and alert messages are carried
directly over the QUIC transport, which takes over
the responsibilities of the TLS record layer.

RFCQ001 - Using TLS to Secure QUIC

https://www.rfc-editor.org/rfc/rfc9001#name-protocol-overview

QUIC support

Source Hop 1 Destination

(C'r:\'(*;'o) * Packets sent are QUIC compliant, so

\ the header is protected and the
\ payload (frames) are encrypted
N ° We Ieveroge openss|3
EXCEEDED
/ Initial
[SRLTE) * Nice “side effects”

ACK)
* Check whether the path filters QUIC
* Determine if the destination supports QUIC
* Check whether ECN is supported
= Set IP-ECN in probes

© Catchpoint 2024

QUIC traceroute

* Like "TCP half open"

* Do a QUIC handshake then closes the session (if opened)
* Send QUIC "Initial" packet
* Include a CRYPTO frame with TLS "Server Hello"
* Intermediate hops will return ICMP TTL Exceeded
* Destination may return
* QUIC packet
* ICMP port unreachable (still good, dest reached)
* Nothing (timedout)
* Close the session if it is the case
* Send QUIC Initial packet including a CONNECTION_CLOSE frame

© Catchpoint 2024

ECN bleaching detection

© Catchpoint 2024

ECN mechanism

* ECN is a mechanism to signal that a packet experienced congestion
(The Addition of Explicit Congestion Notification to IP - rfc3168, 2001)
* When a packet experiences congestion is marked instead of dropped

* The destination signals this event to the source, which in turn adjusts the rate

Network Working Group K. Ramakrishnan
Request for Comments: 3168 TeraOptic Networks
Updates: 2474, 2401, 793 S. Floyd
Obsoletes: 2481 ACIRI
Category: Standards Track D. Black

EMC

September 2001

The Addition of Explicit Congestion Notification (ECN) to IP

© Catchpoint 2024

https://www.rfc-editor.org/rfc/rfc3168.txt

ECN marking

* Two bits into the IP header

* The source declares that a packet should be treated with ECN by

setting the IP-ECN fields either to 01 or 10
* When congestion happens, instead of dropping the packet the

router sets the IP-ECN fields to 11 (CE - Congestion Experienced)

© Catchpoint 2024

IP-ECN: 01

IP-ECN: 01

IP-ECN: 00

IP-ECN: O[_f

&

IP-ECN: 11

IP-ECN: 11

ECN feedback

* A destination that receives a packet with IP-ECN = CE should report to
the source this event
* The source should then adjust the rate

* The report is done at transport /application layer
* Example: in TCP, this event can be reported using a dedicated TCP flag (ECE — ECN-Echo)

e 1 2 3 4 5 6 7 & 9 1@ 11 12 13 14 15

T S e e L JEppiy PR B L Tr TSy R JEpep e
I I | CJEJUIALTPIR]S]F]
| Header Length | Reserved | WjCc R C|IS|S|Y | I]|
I I | RPEJG[K[H]T]NIJ]N]

e B Sy S

© Catchpoint 2024

ECN and L4S

* Recently, ECN mechanism got renewed attention due to L4S
(Low Latency, Low Loss, and Scalable Throughput — rfc2330, 2023)

* L4S requires an ECN feedback more accurate wrt the “classic” 2001 version

L4S

Nokia Bell Labs pioneers L4S, the crucial

= 1 b i
enabler for Iarge Scale deployments Of real sender to react faster to queue build-up vi zllle(z)ri-r;)gox
time applications E2E queue build-up estimation

Use of L4S requires a compliant TX/RX and network
(marking, CE feedback, on-path AQM, and new CC)

.’WWDCZS Packets Pack

Marked
ECT(1 Remarked CE

has initial L4S CC support N
e

in evaluation

Reduce network delays with L4S

© Catchpoint 2024

https://www.rfc-editor.org/rfc/rfc9330.txt

More accurate ECN feedback

® TCP: More Accurate Explicit Congestion Notification (AccECN)
Feedback in TCP (still a draft)

s s e e e R e e e e et R RS
| | AlClEJUlATP]R|S]F]
| Header Length | Reserved ElW]|C|R]|]C|]S|Ss]|Y]|TI]
| | RIEIGIK[H]T]INI[N]
LT S S L h e T T TP SR S

® QUIC: Supported natively via ECN counters into the ACK frame

ECN Counts {
ECT@ Count (1),
ECT1 Count (1),
ECN-CE Count (1),

}

© Catchpoint 2024

https://www.ietf.org/archive/id/draft-ietf-tcpm-accurate-ecn-28.txt
https://datatracker.ietf.org/doc/html/rfc9000#name-ecn-counts

ECN bleaching detection

® Intermediate hops can bleach/alter the value of ECN into the IP

header (see for example: The Benefits of Using Explicit Congestion
Notification (ECN) — rfc8087, 2017

® With Pietrasanta traceroute we can send probes with IP-ECN
values different from zero and check hop by hop what was the

IP-ECN value of the probe when it expired

® We can also check whether the destination transport layer (either

TCP or QUIC) supports more accurate ECN feedbacks

o TCP stack need to be patched

o Not all QUIC implementations report ECN counters

https://www.rfc-editor.org/rfc/rfc8087.txt

ECN detection: Some examples

[bash 1% sudo ./ ute -nT -q 1 cn=1 -0 acc-ecn,info 95 -
3 - .44 30 hops max, 60 byte pack

[bash 1% sudo ./traceroute -nT -q 1 --wcn 1 -0 acc-ecn,info 81.236.63.162
tracerou 0 81.236.63.162(81.236.63.1 , 30 hops max, 60 byte packet

* erall

4.68.39. TOS SCP- @ N:1> 6.609 ms 1 2.21.82.1 <T0S5:1,D5CP:0,ECN:1> ©.233 ms

195 ”.195. 23 < . 0, ECN 160.604 ms .27 <TO% 1,DSCP:0,ECN: 1>

195 05.117 <TO05:1, :0,ECN:1> 173.535 ms SCP:0,ECN: 1>

U AWM~

o

1.271 ms
1.115 ms
L 0, - 1.052 ms
.119 < 0, \ 1.875 ms
£ .115.135.198
4.181 <T0S:1,DSCP:0,ECN:1> 170.007 ms R e =

LE e R FU R N]

~ o

. 20
25y ece, cwr> 2.3 ns -
AT, el e, e | e S ; .115.136.200 <T0S:1,DSCP:0,ECN: :
.91.254.90 <T0S:1 DECD-A ECM:1~ 145 761 ms

ation: 1713.
.115. . 2 = :0, N:1> 155.524 ms

DestinationReach
No bleaching, destination 62.113.35. 117 <T0: e E0
supports AccECN over TCP 6 81.2; D, DSCP:0,ECN: 0> 150.816

.166.164 <T! 0,D5CP:0,ECN:@>= 153.555 ms
.167.228 <T05:0,D5CP:0,ECN:0> 153.135 ms

6.63.162 <syn,ack>= 150.907 ms

Bleaching happened

© Catchpoint 2024

ECN bleaching research

® Run Pietrasanta traceroute from our vantage points deployed
around the world to understand “how well” the network is ready

to accommodate L4S
o Where is the bleaching is happening?
O Are there specific countries/ISPs/ASNs where it happens systematically?

® Stay tuned for more information!
| City Overview |

b o) o

Source _ ~ |% Bleach - +|AVgRTT_ ~ | Avg Faili ol : °°o°"{, o () %
Jefferson 54 2 0'_ 8 : © go ® g
Gilr 62 3 o 0% 00°%9.0 ° Og

00 %20 00 -909.0 00 () . 0g©
|San Diego 4 51 2 9% o o0 pt (] 4%)
|Las Vegas z 48 7 @ E o® . o, o 09
Boston F3 50 4 ° e o . 0%9 o9 o %% 0°
Phoenix 23 52 7 o ° °e o L}
New York 21 49 4 ‘o = ©° .
Seattle 19 55 4 o CL S - b
Chicago 18 a2 7 o ., °° o
Washington 1 41 9
Austin 1 63 13 :
Denver 10 a4 10 (2] ° o
Honolulu 9 93 7 O L8
Kansas 8 7 Okso ¢ o o @ [}
Walla Walla 9 56 10

© Catchpoint 2024

Work in Azure environment

Catchpoint 2024

Azure environment

* (Linux) VM with private |IP
* Inbound ICMP packets are allowed

sudo traceroute -I google.com

tracer

ou
ok

*

te to google.com (142.251.46.174), 30 hops max, 60 byte packets

+

ok k

nug04s44-in-t14.1el00.net (142.251.46.174) 2.040 ms 2.050 ms 1.784 ms

1
2
3
4
5
6
7
8
9
0
1

—

* Intermediate hops are all *

* This happens for all traceroute protocols

© Catchpoint 2024

Azure environment

® This happens because the source IP of the original probe encapsulated into
the ICMP TTL Exceeded is left with the node public IP

® Thus, the ICMP reply is discarded by the kernel (not by traceroute)

= a X

> Frame 3834: 184 bytes on wire (1472 bits), 184 bytes captured (1472 bits) > Frame 3822: 76 bytes on wire (688 bits), 76 bytes captured (688 bits)
> Linux cooked capture vl > Linux cooked capture vl
> Internet Protocol Version 4, Src: 184.44.11.253 > Internet Protocol Version Src: 10.@.1.5, Pst: 8.8.8.8
v Internet Control Message Protocol ~ Internet Con locol

Type: 11 (Time-to-live excesded) =P ltcho (ping) requifst)

Code: @ (Time to live exceeded in transit) . A Code: @

Checksum: @xfaff [correct] mlsmcl’rch Checksum: @x386b [correct

[Checksum Status: Goad] [Checksum Status: Good]

Unused: 886200088
Internet Protocol Version 4
Internet Control Message Protoco.
Type: 8 (Echo (ping) request)
Code: @
Checksum: @x386b [unverified] [in ICMP error packet]
[Checksum Status: Unverified]
Identifier (BE): 18937 (@x49f9)
Identifier (LE): 63817 (@xf049)
Sequence Number (BE): 22 (Bx@816)
Sequence Number (LE): 5632 (@x1600)
v Data (32 bytes)
Data: 48494a4b4cad4e4T505152535455565758595a5b5c5d5e5TER61626364656667
[Length: 32]

ICMP Multi-Part Extensions .I) PrObe SenT

2) ICMP TTL Exceeded

Identifier (BE): 18937 (@x49f9)
Dst: 8.8.3.8 Identifier (LE): 63817 (@xf049)
Sequence Number (BE): 22 (8xB016)
Sequence Number (LE): 5632 (Bx1608)
» [No respense seen]
v Data (32 bytes)
Data: 48494a4b4cad4e4f585152535455565758595a5b5¢5d5e5FA061626364656667
[Length: 32]

© Catchpoint 2024

Work in Azure environment

* We enhanced traceroute to work in "loose match mode"
* Open an additional raw ICMP socket to receive all ICMP packets and
do the "kernel checks" at user level...

® ... but do not check the source address of the encapsulated probe

traceroute --loose-match -I google.com

,—'.

a

ceroute to google.com (142.251.46.174), 30 hops max, 60 byte packets, overall timeout not set
X .003980

.003996

.004010

004024

.004039

030275

ae3l-0.sjc-9cbe-1b.ntwk.msn.net (104.44.238.247) 1.617 ms 1.617 ms 1.611 ms D=0.001641
google.sjc-96cbe-1b.ntwk.msn.net (207.46.219.195) 1.927 ms 1.924 ms 1.919 ms D=0.001939
142.251.69.83 (142.251.69.83) 4.132 ms 4.128 ms 4.124 ms D=0.004141

142.251.224.189 (142.251.224.189) 2.087 ms 2.082 ms 2.081 ms D=0.002101
nug@4s44-in-t14.1el@0.net (142.251.46.174) 2.050 ms 2.046 ms 1.871 ms D=0.003395

e
*
*
*
*
*
*

slbnnn iR en

ooDooo 9o

*
* ok
* ok
k%
* ok
* ok

r
1
2
3
4
5
6
7
8
9
0
1

[—rp—

© Catchpoint 2024

TCP InSession

Catchpoint 2024

TCP "InSession"

* Classic TCP traceroute sends a different SYN for each hop
* Different SYNs can take different paths

* No consistency within a single traceroute
* Many SYNs are sent per traceroute

* Trigger firewall rules (SYN flood?)

« TCP InSession firstly opens a TCP session with the destination
- Then tracerouting is performed by sending 1-byte data packets within the

session (with incremental TTL)

Checkout our blog for more information: https: / /www.catchpoint.com/blog /traceroute-

insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool

© Catchpoint 2024

https://www.catchpoint.com/blog/traceroute-insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool
https://www.catchpoint.com/blog/traceroute-insession-catchpoints-effort-towards-a-more-reliable-network-diagnostic-tool

And many more!

Path MTU performance improvements

* Report ToS/DSCP hop by hop

* Report MSS when running in TCP mode

* Handle print in a separate thread (speed up)
* Overall timeout

* Compile and run on Alpine

* Avoid UDP standard filtering

© Catchpoint 2024

Thank youl

* Feel free to check/use/ & contributel!

https: / /github.com /catchpoint /Networking.traceroute / (GPL!)

* And come by to meet us!

* Pietrasanta is a nice town on Tuscany seaside...

© Catchpoint 2024

https://github.com/catchpoint/Networking.traceroute/

	Slide 1: "Where the !?*! are the packets going?”
	Slide 2: Traceroute
	Slide 3: Traceroute implementations
	Slide 4: Linux traceroute
	Slide 5: Pietrasanta Traceroute
	Slide 6: Pietrasanta Traceroute
	Slide 7: QUIC traceroute
	Slide 8: QUIC
	Slide 9: QUIC support
	Slide 10: QUIC traceroute
	Slide 11: ECN bleaching detection
	Slide 12: ECN mechanism
	Slide 13: ECN marking
	Slide 14: ECN feedback
	Slide 15: ECN and L4S
	Slide 16: More accurate ECN feedback
	Slide 17: ECN bleaching detection
	Slide 18: ECN detection: Some examples
	Slide 19: ECN bleaching research
	Slide 20: Work in Azure environment
	Slide 21: Azure environment
	Slide 22: Azure environment
	Slide 23: Work in Azure environment
	Slide 24: TCP InSession
	Slide 25: TCP "InSession"
	Slide 26: And many more!
	Slide 27: Thank you!

